7-simplex |
Truncated 7-simplex |
|
Bitruncated 7-simplex |
Tritruncated 7-simplex |
|
Orthogonal projections in A7 Coxeter plane |
---|
In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.
There are unique 3 degrees of truncation. Vertices of the truncation 7-simplex are located as pairs on the edge of the 7-simplex. Vertices of the bitruncated 7-simplex are located on the triangular faces of the 7-simplex. Vertices of the tritruncated 7-simplex are located inside the tetrahedral cells of the 7-simplex.
Contents |
Truncated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t0,1{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | 16 |
5-faces | |
4-faces | |
Cells | 350 |
Faces | 336 |
Edges | 196 |
Vertices | 56 |
Vertex figure | Elongated 5-simplex pyramid |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex, Vertex-transitive |
In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.
The vertices of the truncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Bitruncated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t1,2{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 588 |
Vertices | 168 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex, Vertex-transitive |
The vertices of the bitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Tritruncated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t2,3{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 980 |
Vertices | 280 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex, Vertex-transitive |
The vertices of the tritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
These three polytopes are from a set of 71 uniform 7-polytopes with A7 symmetry.